Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]						
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi						
CRM08	Rev 1.10	EC	04/08/21			

CONTINUOUS INTERNAL EVALUATION- 3

Dept:EC	Sem / Div:VI	Sub:Digital Communication	S Code:18EC61			
Date:04-08-2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

Q N	Questions	Marks	RBT	COs			
	PART A						
	With a neat block diagram Explain the digital PAM transmission through bandlimited base band channels and obtain the expression for ISI.		L2	CO4			
b	Explain the model of a spread spectrum digital communication system.	10	L2	CO5			
c	Explain the effect of de-spreading on narrow band interference	5	L2	CO5			
	OR						
	What is eye pattern? With a neat diagram explain the timing features pertaining to eye diagram and its interpretation for the baseband binary data transmission system.		L2	CO4			
	Explain the generation and demodulation of direct sequence spread spectrum signal with the relevant waveforms and spectrum.		L2	CO5			
	Write a short note on application of spread spectrum in wireless LANs.	5	L2	CO5			
	PART B						
	What are adaptive equalizers? Explain the linear adaptive equalizer based on the MSE criterion.	10	L2	CO4			
	With a neat block diagram explain the frequency hopped spread spectrum.	10	L2	CO5			
	Write a note on low detectability signal transmission as an application of direct sequence spread spectrum.	5	L2	CO5			
	OR						
4 a	State and prove Nyquist condition for zero ISI.	10	L2	CO4			
	With a neat diagram explain the generation of PN sequences and state its properties.	10	L2	CO5			
	Compare Direct sequence spread spectrum technique with Frequency hopped spread spectrum technique.	5	L2	CO5			

-